黄石施工电梯人脸识别系统 服务稳定
浏览次数:115次
- 产品规格:
- 发货地:上海市嘉定区嘉定镇街道
关键词
黄石施工电梯人脸识别系统
详细说明
人脸识别:业界*
1、识别率更高
比以色列face.com 人脸识别系统准确率高 25%比国内某知名人脸识别商用系统准确率高55%
2、识别速度更快
单台服务器每秒可完成1500 万次人脸比对在移动终端上人脸检测帧率是 Google 的 3 倍
3、对人脸容忍度更高
人脸姿态变化30 度内可识别,60 度内可检测人脸大小低50 像素可识别,28 像素可检测
4、在海量(百万级以上)人脸库应用场景下,人脸识别准确率高达 92%
识别率几乎不受帽子、胡子、眼睛、发型等面部遮挡的影响。
在18-50 年龄范围内,依旧可以保持 90%以上的识别准确率。
技术原理:
人脸识别内容
人脸识别技术包含三个部分:
(1)人脸检测
面貌检测是指在动态的场景与复杂的背景中判断是否存在面像,并分离出这种面像。一般有下列几种方法:
①参考模板法
首先设计一个或数个标准人脸的模板,然后计算测试采集的样品与标准模板之间的匹配程度,并通过阈值来判断是否存在人脸;
②人脸规则法
由于人脸具有一定的结构分布特征,所谓人脸规则的方法即提取这些特征生成相应的规则以判断测试样品是否包含人脸;
③样品学习法
这种方法即采用模式识别中人工神经网络的方法,即通过对面像样品集和非面像样品集的学习产生分类器;
④肤色模型法
这种方法是依据面貌肤色在色彩空间中分布相对集中的规律来进行检测。
⑤特征子脸法
这种方法是将所有面像视为一个面像子空间,并基于检测样品与其在子孔间的投影之间的距离判断是否存在面像。
值得提出的是,上述5种方法在实际检测系统中也可综合采用。
(2)人脸跟踪
面貌跟踪是指对被检测到的面貌进行动态目标跟踪。具体采用基于模型的方法或基于运动与模型相结合的方法。此外,利用肤色模型跟踪也不失为一种简单而有效的手段。
(3)人脸比对
面貌比对是对被检测到的面貌像进行身份确认或在面像库中进行目标搜索。这实际上就是说,将采样到的面像与库存的面像依次进行比对,并找出佳的匹配对象。所以,面像的描述决定了面像识别的具体方法与性能。目前主要采用特征向量与面纹模板两种描述方法:
①特征向量法
该方法是先确定眼虹膜、鼻翼、嘴角等面像五官轮廓的大小、位置、距离等属性,然后再计算出它们的几何特征量,而这些特征量形成一描述该面像的特征向量。
②面纹模板法
该方法是在库中存储若干标准面像模板或面像器官模板,在进行比对时,将采样面像所有象素与库中所有模板采用归一化相关量度量进行匹配。此外,还有采用模式识别的自相关网络或特征与模板相结合的方法。
人脸识别技术的核心实际为“局部人体特征分析”和“图形/神经识别算法。”这种算法是利用人体面部各器官及特征部位的方法。如对应几何关系多数据形成识别参数与数据库中所有的原始参数进行比较、判断与确认。一般要求判断时间低于1秒。
功能模块:
人脸捕获与跟踪
人脸捕获是指在一幅图像或视频流的一帧中检测出人像并将人像从背景中分离出来,并自动地将其保存。人像跟踪是指利用人像捕获技术,当指定的人像在摄像头拍摄的范围内移动时自动地对其进行跟踪。
产品特点
1、人脸识别率高
本产品采用国内先进的人脸识别算法,可以快速准确的识别出当前人员。
2、操作简单
系统正常使用时,只需要启动设备,人脸识别通过即可正常驾驶施工升降机。
3、内置高容量电池
系统内置高容量可充电电池,在系统断电的情况下仍可以正常运行3小时以上,避免了施工升降机每次开门后由于施工升降机断电而导致人脸识别系统无常工作的情况。
4、安装简便
精巧设计夹具,模块化安装,减少安装人员占有施工升降机作业时间。
5、维修便捷
模块化设计,极大方便设备维修、保养,减少维护费用。
技术参数
电气参数:AC220V
工作环境温度:-30℃-60℃
整机功耗:20W
工作湿度:小于95%(25℃)
报警音量:大于40DB
工作方式:连续工作
误差:小于0.5%
震动: 加速度≤5G
报警方式:蜂鸣器报警
人脸识别系统以人脸识别技术为核心,是一项新兴的生物识别技术,是当今国际科技领域攻关的高精尖技术。它广泛采用区域特征分析算法,融合了计算机图像处理技术与生物统计学原理于一体,利用计算机图像处理技术从视频中提取人像特征点,利用生物统计学的原理进行分析建立数学模型,具有广阔的发展前景。2006年,美国已经要求和它有出入免签证协议的国家在10月26日之前必须使用结合了人脸识别的电子护照系统,到 2006年底已经有50多个国家实现了这样的系统。2012年4月,铁路部门宣布车站安检区域将安装用于身份识别的高科技安检系统人脸识别系统;可以对人脸明暗侦测,自动调整动态曝光补偿, 人脸追踪侦测,自动调整影像放大。
主要功能特色包括:
1.灵活的系统扩展性
基于先进的分布式系统架构,支持动态扩充人脸匹配服务器,实现千万级甚至亿级海量人脸库的支持。
2.的人脸比对性能
单台人脸匹配服务器每秒可完成 2000 万人次实时比对,从人脸检测到人脸识别耗时不足 200ms。在百万人脸库规模下,人脸比对结果前 10 位的命中率在95%以上
3.对人脸的宽容度高,具备人脸姿态矫正功能,当人脸左右上下倾斜在 25 度以内时不会影响识别结果。
支持基于可见光环境下的人脸识别,人脸识别结果受光线变化影响小。
对于人脸的变化,包括表情、胡须、眼镜、发型、年龄等,算法均具有良好的适应性,不影响识别准确度。
4.支持移动终端
系统客户端可运行在基于 Android 或 iOS 的移动终端上,可通过移动终端进行实时人脸采集与人脸比对。
m.lyxhhjq.b2b168.com
1、识别率更高
比以色列face.com 人脸识别系统准确率高 25%比国内某知名人脸识别商用系统准确率高55%
2、识别速度更快
单台服务器每秒可完成1500 万次人脸比对在移动终端上人脸检测帧率是 Google 的 3 倍
3、对人脸容忍度更高
人脸姿态变化30 度内可识别,60 度内可检测人脸大小低50 像素可识别,28 像素可检测
4、在海量(百万级以上)人脸库应用场景下,人脸识别准确率高达 92%
识别率几乎不受帽子、胡子、眼睛、发型等面部遮挡的影响。
在18-50 年龄范围内,依旧可以保持 90%以上的识别准确率。
技术原理:
人脸识别内容
人脸识别技术包含三个部分:
(1)人脸检测
面貌检测是指在动态的场景与复杂的背景中判断是否存在面像,并分离出这种面像。一般有下列几种方法:
①参考模板法
首先设计一个或数个标准人脸的模板,然后计算测试采集的样品与标准模板之间的匹配程度,并通过阈值来判断是否存在人脸;
②人脸规则法
由于人脸具有一定的结构分布特征,所谓人脸规则的方法即提取这些特征生成相应的规则以判断测试样品是否包含人脸;
③样品学习法
这种方法即采用模式识别中人工神经网络的方法,即通过对面像样品集和非面像样品集的学习产生分类器;
④肤色模型法
这种方法是依据面貌肤色在色彩空间中分布相对集中的规律来进行检测。
⑤特征子脸法
这种方法是将所有面像视为一个面像子空间,并基于检测样品与其在子孔间的投影之间的距离判断是否存在面像。
值得提出的是,上述5种方法在实际检测系统中也可综合采用。
(2)人脸跟踪
面貌跟踪是指对被检测到的面貌进行动态目标跟踪。具体采用基于模型的方法或基于运动与模型相结合的方法。此外,利用肤色模型跟踪也不失为一种简单而有效的手段。
(3)人脸比对
面貌比对是对被检测到的面貌像进行身份确认或在面像库中进行目标搜索。这实际上就是说,将采样到的面像与库存的面像依次进行比对,并找出佳的匹配对象。所以,面像的描述决定了面像识别的具体方法与性能。目前主要采用特征向量与面纹模板两种描述方法:
①特征向量法
该方法是先确定眼虹膜、鼻翼、嘴角等面像五官轮廓的大小、位置、距离等属性,然后再计算出它们的几何特征量,而这些特征量形成一描述该面像的特征向量。
②面纹模板法
该方法是在库中存储若干标准面像模板或面像器官模板,在进行比对时,将采样面像所有象素与库中所有模板采用归一化相关量度量进行匹配。此外,还有采用模式识别的自相关网络或特征与模板相结合的方法。
人脸识别技术的核心实际为“局部人体特征分析”和“图形/神经识别算法。”这种算法是利用人体面部各器官及特征部位的方法。如对应几何关系多数据形成识别参数与数据库中所有的原始参数进行比较、判断与确认。一般要求判断时间低于1秒。
功能模块:
人脸捕获与跟踪
人脸捕获是指在一幅图像或视频流的一帧中检测出人像并将人像从背景中分离出来,并自动地将其保存。人像跟踪是指利用人像捕获技术,当指定的人像在摄像头拍摄的范围内移动时自动地对其进行跟踪。
产品特点
1、人脸识别率高
本产品采用国内先进的人脸识别算法,可以快速准确的识别出当前人员。
2、操作简单
系统正常使用时,只需要启动设备,人脸识别通过即可正常驾驶施工升降机。
3、内置高容量电池
系统内置高容量可充电电池,在系统断电的情况下仍可以正常运行3小时以上,避免了施工升降机每次开门后由于施工升降机断电而导致人脸识别系统无常工作的情况。
4、安装简便
精巧设计夹具,模块化安装,减少安装人员占有施工升降机作业时间。
5、维修便捷
模块化设计,极大方便设备维修、保养,减少维护费用。
技术参数
电气参数:AC220V
工作环境温度:-30℃-60℃
整机功耗:20W
工作湿度:小于95%(25℃)
报警音量:大于40DB
工作方式:连续工作
误差:小于0.5%
震动: 加速度≤5G
报警方式:蜂鸣器报警
人脸识别系统以人脸识别技术为核心,是一项新兴的生物识别技术,是当今国际科技领域攻关的高精尖技术。它广泛采用区域特征分析算法,融合了计算机图像处理技术与生物统计学原理于一体,利用计算机图像处理技术从视频中提取人像特征点,利用生物统计学的原理进行分析建立数学模型,具有广阔的发展前景。2006年,美国已经要求和它有出入免签证协议的国家在10月26日之前必须使用结合了人脸识别的电子护照系统,到 2006年底已经有50多个国家实现了这样的系统。2012年4月,铁路部门宣布车站安检区域将安装用于身份识别的高科技安检系统人脸识别系统;可以对人脸明暗侦测,自动调整动态曝光补偿, 人脸追踪侦测,自动调整影像放大。
主要功能特色包括:
1.灵活的系统扩展性
基于先进的分布式系统架构,支持动态扩充人脸匹配服务器,实现千万级甚至亿级海量人脸库的支持。
2.的人脸比对性能
单台人脸匹配服务器每秒可完成 2000 万人次实时比对,从人脸检测到人脸识别耗时不足 200ms。在百万人脸库规模下,人脸比对结果前 10 位的命中率在95%以上
3.对人脸的宽容度高,具备人脸姿态矫正功能,当人脸左右上下倾斜在 25 度以内时不会影响识别结果。
支持基于可见光环境下的人脸识别,人脸识别结果受光线变化影响小。
对于人脸的变化,包括表情、胡须、眼镜、发型、年龄等,算法均具有良好的适应性,不影响识别准确度。
4.支持移动终端
系统客户端可运行在基于 Android 或 iOS 的移动终端上,可通过移动终端进行实时人脸采集与人脸比对。
m.lyxhhjq.b2b168.com