巢湖施工电梯人脸识别系统
浏览次数:410次
- 产品规格:
- 发货地:上海市嘉定区嘉定镇街道
关键词
巢湖施工电梯人脸识别系统
详细说明
功能模块:
人脸捕获与跟踪
人脸捕获是指在一幅图像或视频流的一帧中检测出人像并将人像从背景中分离出来,并自动地将其保存。人像跟踪是指利用人像捕获技术,当指定的人像在摄像头拍摄的范围内移动时自动地对其进行跟踪。
施工电梯指纹锁、人脸识别系统同时也适应于塔吊、井架等设备,旨在防范未经授权的人员擅自驾驶操作设备而带来的安全隐患;
在我们平时经常使用的方便上下的垂直电梯,也引进了这样的高新技术。通过一个液晶屏或者摄像头“刷脸”,确认无误之后才可以开启电梯门并操控电梯。这一项技术还引进到一些建设工地的施工电梯。在中建四局珠海公司的工地项目,建筑施工电梯人脸识别系统被广泛推广。
系统运作
2012年4月,铁路部门公布招标公告,对京沪高铁安检区域人脸识别系统工程进行公开招标,上海虹桥站、天津西站和济南西站三个车站安检区域将安装用于身份识别的高科技安检系统人脸识别系统。
业内人士透露,现在有的人脸识别技术在抓取出人脸后,会把焦点对准眉骨到下颚这一倒三角区域,找出该区域的数千个点位,这些点位组成一套数学模型,通过复杂的数学方式计算人脸的相似度,因此准确度很高。
2012年11月,武汉公安正构建一套高精准人脸识别系统,建成后能在1秒钟内比对1亿次图像,瞬间可辨认嫌疑人。这套系统主要通过安装在城市道路路口、两侧以及公交车上的25万个视频探头进行图像采集。视频监控将捕捉到的人像,与后台数据中犯罪嫌疑人面部特征进行精确比对,可在几秒内锁定犯罪嫌疑人。这套系统将在明年3月投入实战应用。
目前,武汉警方已建成以信息采集、分析研判、信息指导行动三项机制以及视频监控系统和**地理信息系统为支撑的动态信息化警务系统。
三峡秭归县于2011年8月启动“人脸识别系统”,建立了退休人员动态信息库。每年9月至次年3月进行退休人员资格认证。截止到2012年12月10日完成离退休人员认证8135人,其中,网上视频认证194人。
2012年11月底,全市所有机关事业经办机构都启用人脸识别系统进行领取养老金资格建模认证工作,2013年5月底完成初次建模工作。若超过期限没有进行身份验证的离退休人员,社保管理系统将会自动停发其养老金。**建模成功后,退休人员可以就近通过互联网和摄像头自行完成身份认证。
人脸检测
面貌检测是指在动态的场景与复杂的背景中判断是否存在面像,并分离出这种面像。一般有下列几种方法:
①参考模板法
首先设计一个或数个标准人脸的模板,然后计算测试采集的样品与标准模板之间的匹配程度,并通过阈值来判断是否存在人脸;
②人脸规则法
由于人脸具有一定的结构分布特征,所谓人脸规则的方法即提取这些特征生成相应的规则以判断测试样品是否包含人脸;
③样品学习法
这种方法即采用模式识别中人工神经网络的方法,即通过对面像样品集和非面像样品集的学习产生分类器;
④肤色模型法
这种方法是依据面貌肤色在色彩空间中分布相对集中的规律来进行检测。
⑤特征子脸法
这种方法是将所有面像**视为一个面像子空间,并基于检测样品与其在子孔间的投影之间的距离判断是否存在面像。
值得提出的是,上述5种方法在实际检测系统中也可综合采用。
人脸建模与检索
系统可以将登记入库的人像数据进行建模提取人脸的特征,并将其生成人脸模板(人脸特征文件)保存到数据库中。在进行人脸搜索时(搜索式),将指定的人像进行建模,再将其与数据库中的所有人的模板相比对识别,*终将根据所比对的相似值列出*相似的人员列表。
先进的特征提取算法
采用独特的自适应的分层特征学习算法,再现系统能针对任意的识别任务通过学习自动生成*优的特征提取,从而不断增加新的检索特征,具有其他系统无法比拟的自学习性和可扩展性。
人脸的识别过程
一般分三步:
(1)首先建立人脸的面像档案。即用摄像机采集单位人员的人脸的面像文件或取他们的照片形成面像文件,并将这些面像文件生成面纹(Faceprint)编码储存起来。
(2)获取当前的人体面像。即用摄像机捕捉的当前出入人员的面像,或取照片输入,并将当前的面像文件生成面纹编码。
(3)用当前的面纹编码与档案库存的比对。即将当前的面像的面纹编码与档案库存中的面纹编码进行检索比对。上述的“面纹编码”方式是根据人脸脸部的本质特征和开头来工作的。这种面纹编码可以抵抗光线、皮肤色调、面部毛发、发型、眼镜、表情和姿态的变化,具有强大的可靠性,从而使它可以从百万人中精确地辨认出某个人。人脸的识别过程,利用普通的图像处理设备就能自动、连续、实时地完成。
人脸识别:业界**
1、识别率更高
比以色列face.com 人脸识别系统准确率高 25%比国内某知名人脸识别商用系统准确率高55%
2、识别速度更快
单台服务器每秒可完成1500 万次人脸比对在移动终端上人脸检测帧率是 Google 的 3 倍
3、对人脸容忍度更高
人脸姿态变化30 度内可识别,60 度内可检测人脸大小*低50 像素可识别,28 像素可检测
4、在海量(百万级以上)人脸库应用场景下,人脸识别准确率高达 92%
识别率几乎不受帽子、胡子、眼睛、发型等面部遮挡的影响。
在18-50 年龄范围内,依旧可以保持 90%以上的识别准确率。
产品一经推出,以其出色稳定的性能、经济实惠的价格受到新老客户的一致好评。
问:人脸识别技术小知识?
答:人脸识别技术是一种基于人脸特征信息的生物识别技术。这一系列相关技术,通常也称为肖像识别技术,采用摄像机采集包含人脸的图像,并自动检测和跟踪图像中的人脸,从而对检测到的人脸进行人脸检测比较。传统的人脸识别技术主要基于可见光图像,这也是一种常见的识别方法。简单说,这是一个让电脑认出你的过程。
人脸识别技术主要是基于人脸图像特征的提取和比较。面部识别系统搜索提取的面部图像的特征数据并将其与存储在数据库中的特征模板进行匹配,并且当人脸与输入的信息吻合时输出匹配结果。
将待识别的人脸特征与获取的人脸特征模板进行比较,根据人脸识别技术判断人脸的身份信息。该过程分为两种类型:一种是确认,即一对一的图像比较过程,另一种是识别,即一对多的图像匹配和比较过程。
理论的面部识别具体包含搭建人脸识别技术的一连串有关技术性,包含面部图象收集、面部精准定位、面部识别归一化处理、真实身份确定及其真实身份搜索等;而范畴的面部识别专指根据面部开展真实身份确定或是真实身份搜索的技术性或系统软件。
m.lyxhhjq.b2b168.com
人脸捕获与跟踪
人脸捕获是指在一幅图像或视频流的一帧中检测出人像并将人像从背景中分离出来,并自动地将其保存。人像跟踪是指利用人像捕获技术,当指定的人像在摄像头拍摄的范围内移动时自动地对其进行跟踪。
施工电梯指纹锁、人脸识别系统同时也适应于塔吊、井架等设备,旨在防范未经授权的人员擅自驾驶操作设备而带来的安全隐患;
在我们平时经常使用的方便上下的垂直电梯,也引进了这样的高新技术。通过一个液晶屏或者摄像头“刷脸”,确认无误之后才可以开启电梯门并操控电梯。这一项技术还引进到一些建设工地的施工电梯。在中建四局珠海公司的工地项目,建筑施工电梯人脸识别系统被广泛推广。
系统运作
2012年4月,铁路部门公布招标公告,对京沪高铁安检区域人脸识别系统工程进行公开招标,上海虹桥站、天津西站和济南西站三个车站安检区域将安装用于身份识别的高科技安检系统人脸识别系统。
业内人士透露,现在有的人脸识别技术在抓取出人脸后,会把焦点对准眉骨到下颚这一倒三角区域,找出该区域的数千个点位,这些点位组成一套数学模型,通过复杂的数学方式计算人脸的相似度,因此准确度很高。
2012年11月,武汉公安正构建一套高精准人脸识别系统,建成后能在1秒钟内比对1亿次图像,瞬间可辨认嫌疑人。这套系统主要通过安装在城市道路路口、两侧以及公交车上的25万个视频探头进行图像采集。视频监控将捕捉到的人像,与后台数据中犯罪嫌疑人面部特征进行精确比对,可在几秒内锁定犯罪嫌疑人。这套系统将在明年3月投入实战应用。
目前,武汉警方已建成以信息采集、分析研判、信息指导行动三项机制以及视频监控系统和**地理信息系统为支撑的动态信息化警务系统。
三峡秭归县于2011年8月启动“人脸识别系统”,建立了退休人员动态信息库。每年9月至次年3月进行退休人员资格认证。截止到2012年12月10日完成离退休人员认证8135人,其中,网上视频认证194人。
2012年11月底,全市所有机关事业经办机构都启用人脸识别系统进行领取养老金资格建模认证工作,2013年5月底完成初次建模工作。若超过期限没有进行身份验证的离退休人员,社保管理系统将会自动停发其养老金。**建模成功后,退休人员可以就近通过互联网和摄像头自行完成身份认证。
人脸检测
面貌检测是指在动态的场景与复杂的背景中判断是否存在面像,并分离出这种面像。一般有下列几种方法:
①参考模板法
首先设计一个或数个标准人脸的模板,然后计算测试采集的样品与标准模板之间的匹配程度,并通过阈值来判断是否存在人脸;
②人脸规则法
由于人脸具有一定的结构分布特征,所谓人脸规则的方法即提取这些特征生成相应的规则以判断测试样品是否包含人脸;
③样品学习法
这种方法即采用模式识别中人工神经网络的方法,即通过对面像样品集和非面像样品集的学习产生分类器;
④肤色模型法
这种方法是依据面貌肤色在色彩空间中分布相对集中的规律来进行检测。
⑤特征子脸法
这种方法是将所有面像**视为一个面像子空间,并基于检测样品与其在子孔间的投影之间的距离判断是否存在面像。
值得提出的是,上述5种方法在实际检测系统中也可综合采用。
人脸建模与检索
系统可以将登记入库的人像数据进行建模提取人脸的特征,并将其生成人脸模板(人脸特征文件)保存到数据库中。在进行人脸搜索时(搜索式),将指定的人像进行建模,再将其与数据库中的所有人的模板相比对识别,*终将根据所比对的相似值列出*相似的人员列表。
先进的特征提取算法
采用独特的自适应的分层特征学习算法,再现系统能针对任意的识别任务通过学习自动生成*优的特征提取,从而不断增加新的检索特征,具有其他系统无法比拟的自学习性和可扩展性。
人脸的识别过程
一般分三步:
(1)首先建立人脸的面像档案。即用摄像机采集单位人员的人脸的面像文件或取他们的照片形成面像文件,并将这些面像文件生成面纹(Faceprint)编码储存起来。
(2)获取当前的人体面像。即用摄像机捕捉的当前出入人员的面像,或取照片输入,并将当前的面像文件生成面纹编码。
(3)用当前的面纹编码与档案库存的比对。即将当前的面像的面纹编码与档案库存中的面纹编码进行检索比对。上述的“面纹编码”方式是根据人脸脸部的本质特征和开头来工作的。这种面纹编码可以抵抗光线、皮肤色调、面部毛发、发型、眼镜、表情和姿态的变化,具有强大的可靠性,从而使它可以从百万人中精确地辨认出某个人。人脸的识别过程,利用普通的图像处理设备就能自动、连续、实时地完成。
人脸识别:业界**
1、识别率更高
比以色列face.com 人脸识别系统准确率高 25%比国内某知名人脸识别商用系统准确率高55%
2、识别速度更快
单台服务器每秒可完成1500 万次人脸比对在移动终端上人脸检测帧率是 Google 的 3 倍
3、对人脸容忍度更高
人脸姿态变化30 度内可识别,60 度内可检测人脸大小*低50 像素可识别,28 像素可检测
4、在海量(百万级以上)人脸库应用场景下,人脸识别准确率高达 92%
识别率几乎不受帽子、胡子、眼睛、发型等面部遮挡的影响。
在18-50 年龄范围内,依旧可以保持 90%以上的识别准确率。
产品一经推出,以其出色稳定的性能、经济实惠的价格受到新老客户的一致好评。
问:人脸识别技术小知识?
答:人脸识别技术是一种基于人脸特征信息的生物识别技术。这一系列相关技术,通常也称为肖像识别技术,采用摄像机采集包含人脸的图像,并自动检测和跟踪图像中的人脸,从而对检测到的人脸进行人脸检测比较。传统的人脸识别技术主要基于可见光图像,这也是一种常见的识别方法。简单说,这是一个让电脑认出你的过程。
人脸识别技术主要是基于人脸图像特征的提取和比较。面部识别系统搜索提取的面部图像的特征数据并将其与存储在数据库中的特征模板进行匹配,并且当人脸与输入的信息吻合时输出匹配结果。
将待识别的人脸特征与获取的人脸特征模板进行比较,根据人脸识别技术判断人脸的身份信息。该过程分为两种类型:一种是确认,即一对一的图像比较过程,另一种是识别,即一对多的图像匹配和比较过程。
理论的面部识别具体包含搭建人脸识别技术的一连串有关技术性,包含面部图象收集、面部精准定位、面部识别归一化处理、真实身份确定及其真实身份搜索等;而范畴的面部识别专指根据面部开展真实身份确定或是真实身份搜索的技术性或系统软件。
m.lyxhhjq.b2b168.com